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Abstract: This paper studies a continuous-time dynamic portfolio selection problem with multiple risky assets in
the utility framework, where we assume that the financial market is composed of one risk-free asset, multiple risky
assets and one zero-coupon bond, and short rate is driven by the CIR model. By using dynamic programming
principle and solving corresponding Hamilton-Jacobi- Bellman(HJB) equation, we obtain the optimal portfolios
for power utility and exponential utility. In addition, we obtain the closed-form solutions to the optimal portfolios
under Hyperbolic Absolute Risk Aversion (HARA) utility, which covers power utility, exponential utility and
logarithm utility as special cases.
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1 Introduction
Portfolio selection theory is to study how in-

vestors distributes their money to a variety of assets
so as to arrive at the goal of increasing returns and re-
ducing the risks, which is an important research as-
pect in the financial system engineering. In recen-
t years, more and more scholars have begin to pay
more increasing attentions to portfolio selection prob-
lems with stochastic interest rates. Nowadays, many
research results have been published on this topic. For
more detailed discussions, these interested readers can
refer to the works of Stanton [1], Deelstra et al. [2],
Grasselli [3], Gao [4], Chang et al. [5], Chang and
Lu [6] and so on. Later, some scholars found out that
both interest rate and volatility should be stochastic in
the real-world environments. In addition, they thought
that it was very necessary to introduce stochastic in-
terest rate and stochastic volatility into portfolio se-
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ural Science Foundation of China (No.15JCQNJC04000).

lection models and the corresponding results would
be very practical. Some results were achieved on this
topic, such as Liu [7], Li and Wu [8], Noh and Kim
[9], Chang and Rong [10], Liu et al. [11] and so on.
But these models were studied under some specific u-
tility criterion, for example, power utility, exponential
utility or logarithm utility.

In the utility theory, HARA utility covers pow-
er utility, exponential utility and logarithm utility as
special cases. Therefore, studying portfolio selection
problems under HARA utility and obtaining the opti-
mal portfolios will be of theoretical values and appli-
cation prospect. However, owing to the complicated
structure of HARA utility, there were seldom work-
s on portfolio selection models with HARA prefer-
ence in the existing literatures, except Jung and Kim
[12], Chang et al. [13], Chang and Rong [14]. To our
knowledge, portfolio selection problems with the ex-
tended CIR model in the utility framework have not
been reported.

In this paper, inspired by the work of Ferland
and Watier [15], we devote ourselves to studying a
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continuous-time dynamic portfolio selection problem
with the extended CIR model in the utility framework.
By using the principle of stochastic dynamic program-
ming and variable change technique, we achieve the
explicit expressions of the optimal portfolios for spe-
cific and general utility function. Compared with the
work of Ferland and Watier [15], our paper has three
main contributions: (i) we use stochastic optimal con-
trol theory to study a portfolio selection problem with
the extended CIR model under utility criterion, while
Ferland and Watier [15] applied backward stochas-
tic differential equation theory to discuss this prob-
lem under mean-variance criterion; (ii) under HARA
utility, we directly conjecture the form of the value
function and solve the original HJB equation by using
variable change technique, which is completely dif-
ferent from the works of Jung and Kim[12], Chang
et al.[13], Chang and Rong [14]; (iii) we don’t obtain
only the closed-form solutions of the optimal portfo-
lio under power utility and exponential utility, but also
those under HARA utility.

The remainder of the paper is organized as fol-
lows. Section 2 presents the financial market and u-
tility criterion. Section 3 derives the HJB equation
for the value function. Section 4 and Section 5 study
the optimal portfolios under power utility, exponen-
tial utility and HARA utility respectively. Section 6
concludes the paper.

2 The model

Throughout the paper, the transpose of a ma-
trix or a vector is denoted by (·)′ and the nor-
m of a vector is denoted by ∥x∥, namely ∥x∥ =√

x21 + x22 + · · ·+ x2n. E(·) is the mathematical ex-
pectation of a random variable, and T is the finite
fixed investment horizon. (Ω,F ,P, {Ft}06t6T ) is a
given complete probability space. Assume that the fi-
nancial market is composed of n+ 2 assets: one risk-
free asset, n risk assets and one zero-coupon bond.

The first asset is a risk-free asset (e.g., a bank ac-
count), whose price process at time t is denoted by
S0(t), then S0(t) satisfies

dS0(t)

S0(t)
= r(t)dt, S0(0) = 1, (1)

where r(t) is the short rate.
In this paper, we assume that short rate r(t) is

dynamic and is described by the following interest rate
term structure:

dr(t) = (a− br(t))dt− k
√

r(t)dWr(t),

r(0) = r0 > 0,
(2)

where a, b, k are positive constants satisfying 2a >
k2. It is well known that r(t) > 0 for all t > 0
under the condition of 2a > k2. Wr(t) is a one-
dimensional well-defined and independent adapted
Brownian motion on given filtered complete probabil-
ity space (Ω,F ,P, {Ft}06t6T ).

The risky assets are n stocks. Assumed that the
price of the ith risky asset is denoted by Si(t) at time t,
i = 1, 2, · · · , n, t ∈ [0, T ]. Considering the affect of
r(t) on Si(t), we let Si(t) satisfy(referring to Ferland
and Watier [15]):

dSi(t)

Si(t)
= r(t)dt+

n∑
j=1

σij (dWj(t) + λjdt) ,

+ σir
√

r(t)
(
dWr(t) + λr

√
r(t)dt

)
,

Si(0) =si > 0,

(3)

where λs = (λ1, λ2, · · · , λn)
′, σs = (σij)n×n, σr =

(σ1r, σ2r, · · · , σnr)′. Ws(t) = (W1(t), · · · ,Wn(t))
′

is a n-dimensional well-defined and independen-
t adapted Brownian motion on (Ω,F ,P, {Ft}06t6T ),
and is independent of Wr(t).

The last asset is a zero-coupon bond with matu-
rity T , whose price process at time t is denoted by
B(t, T ), t ∈ [0, T ]. In the stochastic interest rate envi-
ronment, the zero-coupon bond is not a risk-free asset
but a risk asset, and the price process is mainly affect-
ed by short rate dynamics r(t). So we can assume that
B(t, T ) meets the following stochastic differential e-
quation(SDE)(referring to Ferland and Watier [15]):

dB(t, T )

B(t, T )
= r(t)dt+ σB(t)(dWr(t)

+ λr

√
r(t)dt), B(T, T ) = 1,

(4)

where σB(t) = kh(t)
√

r(t), and h(t) is given by

h(t) =
2
(
1− em(T−t)

)
m− (b− λrk) + em(T−t)(m+ b− λrk)

,

m =
√

(b− λrk)2 + 2k2.

Suppose that investor’s initial fund is x0 > 0.
And πi(t) and πB(t) are the amount invested in the
ith stock and zero-coupon bond respectively, i =
1, 2, · · · , n. The investor’s wealth at time t is denoted
by X(t), then the amount invested in risk-free asset

is π0(t) = X(t) −
n∑

i=1
πi(t) − πB(t), t ∈ [0, T ]. Let

πs(t) = (π1(t), π2(t), · · · , πn(t))′, then under the in-
vestment strategy πs(t) and πB(t), the wealth process
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of the investor satisfies:

dX(t) =
(
X(t)r(t) + πB(t)σB(t)λr

√
r(t) dt

+π′
s(t)(σsλs + σrλrr(t))

)
+ π′

s(t)σsdWs(t)

+
(
π′
s(t)σr

√
r(t) + πB(t)σB(t)

)
dWr(t),

X(0) = x0 > 0,

(5)

Definition 1 (Admissible strategy) The portfolios
πs(t) and πB(t) are said to be admissible if the fol-
lowing conditions are satisfied:

(i) πs(t) and πB(t) are Ft–progressively measur-
able, and satisfy the conditions∫ T

0

(
∥πs(t)∥2 + π2

B(t)

)
dt < ∞;

(ii) E
(∫ T

0

(
π′
s(t)σr

√
r(t) + πB(t)σB(t)

)2
dt

+

∫ T

0
∥π′

s(t)σs∥2dt
)

< ∞;

(iii) the SDE (5) has a unique solution corre-
sponding to any πs(t) and πB(t);

Assume that the set of all admissible investmen-
t strategies πs(t) and πB(t) is denoted by Γ. Our
goal is to maximize the expected utility of the terminal
wealth. Mathematically, the objective function can be
rewritten as follows:

Maximize
πB∈Γ,πs∈Γ

E [U(X(T ))] , (6)

where U(x) is the utility function, which satisfied the
conditions: dU(x)

dx > 0 and d2U(x)
dx2 < 0.

In this paper, we fucus on the following three u-
tility functions:

(i) U(x) =
xη

η
, η < 1, η ̸= 0;

(ii) U(x) = −e−βx, β > 0;

(iii) U(x) =
1− p

qp

(
q

1− p
x+ γ

)p

.

3 The HJB equation

In this section we see the problem (6) as a s-
tochastic optimal control problem, and derive the HJB
equation of the value function by applied dynamic
programming principle.

We define the value function H(t, r, x) as:

Maximize
πB∈Γ,πs∈Γ

H(t, r, x)

= E [U(X(T ))|X(t) = x, r(t) = r] ,

with boundary condition given by H(T, r, x) = U(x).
According to dynamic programming principle,

H(t, r, x) can be seen as a continuous solution of the
following HJB equation.

sup
πB∈Γ,πs∈Γ

{
Ht + (rx+ πB(t)σB(t)λr

√
r

+ π′
s(t)(σsλs + σrλrr))Hx +

1

2
((π′

s(t)σs)
2

+ (π′
s(t)σr

√
r + πB(t)σB(t))

2)Hxx

+ (a− br)Hr +
1

2
(k
√
r)2Hrr

− k
√
r(π′

s(t)σr
√
r + πB(t)σB(t))Hxr

}
= 0,

(7)

where Ht,Hx,Hxx,Hr,Hrr, Hrx are the first-order
and second-order partial derivatives with respect to
t, x, r respectively.

By using the first-order condition of the optimali-
ty principle, we get the optimal value:

π∗
s(t) =− (σ′

s)
−1λs

Hx

Hxx
,

π∗
B(t) =

(λ′
sσ

−1
s σr − λr)

√
r

σB(t)
· Hx

Hxx

+
k
√
r

σB(t)
· Hxr

Hxx
.

(8)

Putting (8) in (7), we obtain a partial differential
equation for the value function H(t, r, x):

Ht + rxHx + (a− br)Hr

+
1

2
k2rHrr −

1

2

(
∥λs∥2 + λ2

rr
) H2

x

Hxx

+ kλrr
HxHxr

Hxx
− 1

2
k2r

H2
xr

Hxx
= 0.

(9)

4 Optimal portfolios under specific
utility

In this section, we devote ourselves to investigat-
ing the optimal portfolios in the power and exponen-
tial utility cases.

4.1 Power utility

According to the boundary condition given by
H(T, r, x) = U(x) = xη

η , the solution of the equa-
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tion (9) can be conjectured as:

H(t, r, x) =
xη

η
f(t, r), f(T, r) = 1.

Then, first-order and second-order partial deriva-
tives of H(t, r, x) with respect to t, x, r are as follows.

Ht =
xη

η
ft, Hx = xη−1f,

Hxx = (η − 1)xη−2f, Hr =
xη

η
fr,

Hrr =
xη

η
frr, Hxr = xη−1fr.

(10)

Putting (10) in (9), we obtain

xη

η

(
ft +

(
ηr − η

2(η − 1)

(
∥λs∥2 + λ2

rr
))

f

+

(
a− br +

η

η − 1
kλrr

)
fr

+
1

2
k2rfrr −

η

2(η − 1)
k2r

f2
r

f

)
= 0.

Eliminating the dependence on x, we get

ft +

(
ηr − η

2(η − 1)

(
∥λs∥2 + λ2

rr
))

f

+

(
a− br +

η

η − 1
kλrr

)
fr

+
1

2
k2rfrr −

η

2(η − 1)
k2r

f2
r

f
= 0.

(11)

Lemma 2 Assume that the solution of the equation
(11) is of the form f(t, r) = eB1(t)+B2(t)r, and it-
s boundary condition is B1(T ) = B2(T ) = 0, then
when η < min

{
b2

(kλr−b)2+2k2
, 1

}
and η ̸= 0, B1(t)

and B2(t) are determined by (16) and (15) respective-
ly.

Proof. Putting f(t, r) = eB1(t)+B2(t)r in the e-
quation (11), we get

eB1(t)+B2(t)r

((
Ḃ2(t) +

(
η − ηλ2

r

2(η − 1)

)
+

(
ηkλr

η − 1
− b

)
B2(t)−

k2

2(η − 1)
B2

2(t)

)
r

+Ḃ1(t)−
η

2(η − 1)
∥λs∥2 + aB2(t)

)
= 0.

Eliminating the dependence on r, we get

Ḃ2(t) + η − ηλ2
r

2(η − 1)
+

(
ηkλr

η − 1
− b

)
B2(t)

− k2

2(η − 1)
B2

2(t) = 0, B(T ) = 0;

(12)

Ḃ1(t)−
η

2(η − 1)
∥λs∥2 + aB2(t) = 0, A(T ) = 0.

(13)
We rewrite the equation (12) as:

Ḃ2(t) =
k2

2(η − 1)
B2

2(t)−
(
ηkλr

η − 1
− b

)
B2(t)

−
(
η − ηλ2

r

2(η − 1)

)
.

(14)

After easy calculations, the discriminant for
quadratic equation

k2

2(η − 1)
B2

2(t)−
(
ηkλr

η − 1
− b

)
B2(t)

−
(
η − ηλ2

r

2(η − 1)

)
= 0

is given by △1 =
1

1−η

(
b2− η

(
(kλr − b)2+2k2

))
.

Considering the conditions η < 1 and η ≠ 0,
when η < b2

(kλr−b)2+2k2
, we have △1 > 0, i.e. when

η < min
{

b2

(kλr−b)2+2k2
, 1

}
, the above quadratic

equation has two different roots, which can be ex-
pressed as

m1,2 =
ηkλr − (η − 1)b

k2
± (η − 1)

√
△1

k2
.

The equation (14) can be changed into

Ḃ2(t) =
k2

2(η − 1)
(B2(t)−m1)(B2(t)−m2).

Integrating the above equation from t to T , we get

1

m1 −m2

∫ T

t

(
1

B2(t)−m1
− 1

B2(t)−m2

)
dB2(t)

=
k2

2(η − 1)
(T − t).

Therefore, we have

B2(t) =
m1m2

(
1− exp

{
k2

2(η−1)(m1 −m2)(T − t)
})

m1 −m2 · exp
{

k2

2(η−1)(m1 −m2)(T − t)
} .

(15)
Introducing (15) into (13), we obtain

B1(t) =

(
am2 −

η

2(η − 1)
∥λs∥2

)
(T − t)

+
2a(1− η)

k2
ln

m1 −m2

m1 −m2 exp{ k2

2(η−1)(m1 −m2)(T − t)}
.

(16)
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The proof is completed. �
Considering (10) and Lemma 2, we get

Hx

Hxx
=

1

η − 1
x,

Hxr

Hxx
=

1

η − 1
B2(t)x.

To sum up, the optimal investment strategy of the
problem (6) under power utility can be formulated as
follows.

Theorem 3 If utility function is given by U(x) = xη

η ,
η < 1 and η ̸= 0, then under the condition of
η < min

{
b2

(kλr−b)2+2k2
, 1

}
and η ̸= 0, the optimal

investment strategy of the problem (6) is expressed as

π∗
s(t) =

1

1− η
(σ′

s)
−1λsX(t),

π∗
B(t) =

1

η − 1
·
(λ′

sσ
−1
s σr − λr)

√
r(t)

σB(t)
X(t)

+
1

η − 1
·
k
√

r(t)

σB(t)
B2(t)X(t).

(17)

where B2(t) is determined by (15).

From Theorem 3, we have the following conclu-
sions:

(1) The optimal amount π∗
s(t) invested in the s-

tock at time t is correlated with market parameters
η, σs, λs, and has nothing to do with the other market
parameters;

(2) π∗
s(t) is increasing with the parameter η, and

is proportional to wealth process X(t);
(3) The optimal amount π∗

B(t) invested in the
zero-coupon bond at time t has correlations with
market parameters η, σs, λs, b, k, σr, λr, r(t), and has
nothing to do with the parameter a;

(iv) π∗
B(t) is proportional to wealth process X(t).

When η → 0, we have B2(t) = 0. As a result, the
optimal investment strategy of the problem (6) is re-
duced to:

π∗
s(t) = (σ′

s)
−1λsX(t),

π∗
B(t) =

(λr − λ′
sσ

−1
s σr)

√
r

σB(t)
X(t).

As we all know, power utility is degenerated into
logarithmic utility in the case of η → 0. So we indeed
get the optimal investment strategy of the problem (6)
under logarithmic utility.

4.2 Exponential utility

Under exponential utility, the boundary condition
of the equation (9) is given by H(t, r, x) = U(x) =

−e−βx. So the solution of the equation (9) can be
supposed to be of the form

H(t, r, x) = −e−βxg(t,r)+h(t,r),

g(T, r) = 1, h(T, r) = 0.

Then, first-order and second-order partial derivatives
of H(t, r, x) with respect to t, x, r are following:

Ht = H(−βxgt + ht), Hx = H(−βg),

Hxx = H(−βg)2, Hr = H(−βxgr + hr),

Hrr = H(−βxgr + hr)
2 +H(−βxgrr + hrr),

Hxr = H(−βg)(−βxgr + hr) +H(−βgr).

(18)

Introducing (18) into (9) yields

H

{
− βx

(
gt + rg + (a− br + kλrr)gr

+
1

2
k2rgrr − k2r

g2r
g

)
+ ht +

(
a+ kλrr − br − k2

gr
g
r

)
hr

+
1

2
k2rhrr −

1

2

(
∥λs∥2 + λ2

rr

)
+ kλrr

gr
g

− 1

2
k2r

g2r
g2

}
= 0.

Comparing the coefficients both sides of the equa-
tion, we get

gt + rg + (a− br + kλrr)gr

+
1

2
k2rgrr − k2r

g2r
g

= 0, g(T, r) = 1;
(19)

ht +

(
a+ kλrr − br − k2

gr
g
r

)
hr

+
1

2
k2rhrr −

1

2

(
∥λs∥2 + λ2

rr
)

+ kλrr
gr
g

− 1

2
k2r

g2r
g2

= 0, h(T, r) = 0.

(20)

Lemma 4 Suppose that the solution of the equa-
tion(19) is of the structure g(t, r) = eC1(t)+C2(t)r,
with boundary conditions C1(T ) = 0 and C2(T ) = 0,
then C1(t) and C2(t) are determined by (24) and (23)
respectively.

Proof. Putting g(t, r) = eC1(t)+C2(t)r in the e-
quation (19) yields

eC1(t)+C2(t)r
(
Ċ1(t) + aC2(t) + r

(
Ċ2(t) + 1

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Hao Chang, Xue-Yan Li

E-ISSN: 2224-2856 337 Volume 11, 2016



+(kλr − b)C2(t)−
1

2
k2C2

2 (t)

))
= 0.

Eliminating the dependence on r, we get

Ċ2(t) + 1 + (kλr − b)C2(t)−
1

2
k2C2

2 (t) = 0,

C2(T ) = 0;

(21)

Ċ1(t) + aC2(t) = 0, C1(T ) = 0. (22)

Using the same solving process as the equation
(12), we obtained

C2(t) =
m3m4(1− exp

{
1
2k

2(m3 −m4)(T − t)
}
)

m3 −m4 exp
{
1
2k

2(m3 −m4)(T − t)
} ,

(23)
where

m3,4 =
kλr − b

k2
±

√
(kλr − b)2 + 2k2

k2
.

Further, we obtained

C1(t) = a

(
m4(T − t)

− 2

k2
ln

m3 −m4

m3 −m4 exp{1
2k

2(m3 −m4)(T − t)}

)
.

(24)

The proof ends. �

Lemma 5 Assume that the solution of the equation
(20) is given by h(t, r) = C3(t)+C4(t)r, with bound-
ary conditions: C3(T ) = 0 and C4(T ) = 0, then
C3(t) and C4(t) are determined by (28) and (27) re-
spectively.

Proof. Introducing h(t, r) = C3(t)+C4(t)r into
(20), we arrive at

Ċ3(t) + aC4(t)−
1

2
∥λs∥2

+ r
(
Ċ4(t) + (kλr − b− k2C2(t))C4(t)

−
(
1

2
k2C2

2 (t)− kλrC2(t) +
1

2
λ2
r

))
= 0.

Comparing the coefficients both sides of the
above equation

Ċ4(t) + (kλr − b− k2C2(t))C4(t)

=
1

2
k2C2

2 (t)− kλrC2(t) +
1

2
λ2
r , C4(T ) = 0,

(25)

Ċ3(t) + aC4(t)−
1

2
∥λs∥2 = 0, C3(T ) = 0, (26)

Solving the equations (25) and (26), we get

C4(t) = −e−
∫ t
0 (kλr−b−k2C2(s))ds

×
∫ T

t

1

2
(kC2(t)− λr)

2e
∫ t
0 (kλr−b−k2C2(s))dsdt,

(27)

C3(t) = a

∫ T

t
C4(t)dt−

∫ T

t

1

2
∥λs∥2dt. (28)

Therefore, we complete the proof. �
Considering (18) and Lemma 4 and Lemma 5, we

get
Hx

Hxx
= − 1

βg
,

Hxr

Hxx
= xC2(t)−

C4(t)

βg
− C2(t)

βg
.

To sum up, the optimal investment strategy for the
problem (6) under exponential utility can be formulat-
ed as follows.

Theorem 6 If utility function is given by U(x) =
−e−βx, β > 0, then the optimal investment strategy
of the problem (6) is

π∗
s(t) = (σ′

s)
−1λs

1

βg(t, r)
, (29)

π∗
B(t) = −

(λ′
sσ

−1
s σr − λr)

√
r(t)

σB(t)
· 1

βg(t, r)

+
k
√

r(t)

σB(t)
·
(
X(t)C2(t)−

C4(t)

βg(t, r)
− C2(t)

βg(t, r)

)
.

(30)

where g(t, r) = eC1(t)+C2(t)r, C2(t) and C4(t) is de-
termined by (23) and (27) respectively.

From Theorem 6, we arrive at the following con-
clusions.

(i) The optimal amount π∗
s(t) invested in the s-

tock at time t is correlated with market parameters
β, a, b, k, σs, λs, λr, r(t), and has nothing to do with
σr;

(ii) π∗
s(t) is decreasing with the parameter β.

(iii) The optimal amount π∗
B(t) invested in the

zero-coupon bond at time t is connected with all mar-
ket parameters.
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5 Optimal portfolio under general u-
tility

For general utility function, we are concerned
with HARA utility, which covers power utility, expo-
nential utility and logarithmic utility as special cases.
According to the boundary condition

H(T, r, x) = U(x) =
1− p

qp

(
q

1− p
x+ γ

)p

,

we assume the solution of the equation (9) to be of
form

H(t, r, x) =
1− p

qp

(
q

1− p
x+ γφ(t, r)

)p

J1−p(t, r),

φ(T, r) = 1, J(T, r) = 1.

Then, first-order and second-order partial derivatives
for H(t, r, x) with respect to t, x, r are calculated as
follows:

Ht =
1− p

q

(
q

1− p
x+ γφ

)p−1

γφtJ
1−p

+
(1− p)2

qp

(
q

1− p
x+ γφ

)p

JtJ
−p,

Hx =J1−p

(
q

1− p
x+ γφ

)p−1

,

Hr =
1− p

q
γφrJ

1−p

(
q

1− p
x+ γφ

)p−1

+
(1− p)2

qp
J−pJr

(
q

1− p
x+ γφ

)p

,

Hxx =(−q)J1−p

(
q

1− p
x+ γφ

)p−2

,

Hrr =
(1− p)2

−q
γ2φ2

rJ
1−p

(
q

1− p
x+ γφ

)p−2

+
1− p

q
γ

(
q

1− p
x+ γφ

)p−1

× [φrrJ
1−p + 2(1− p)J−pJrφr]

+
(1− p)2

qp

(
q

1− p
x+ γφ

)p

× [JrrJ
−p − pJ−p−1J2

r ],

Hrx =(1− p)J−pJr

(
q

1− p
x+ γφ

)p−1

+ J1−p

(
q

1− p
x+ γφ

)p−2

(p− 1)γφr.

Putting the above partial derivatives in (9), we get

1− p

qp

(
q

1− p
x+ γφ

)p−1

pJ1−pγ

(
φt − rφ

+(a− br + kλrr)φr +
1

2
k2rφrr

)
+

1− p

qp

(
q

1− p
x+ γφ

)p

(1− p)J−p

×
(
Jt +

(
p

1− p
r +

p

2(1− p)2
(∥λs∥2 + λ2

rr)

)
J

+

(
a− br − p

1− p
kλrr

)
Jr +

1

2
k2rJrr

)
= 0.

Eliminating the dependence on x, we obtain

φt − rφ+(a− br+ kλrr)φr +
1

2
k2rφrr = 0. (31)

Jt +

(
p

1− p
r +

p

2(1− p)2
(∥λs∥2 + λ2

rr)

)
J

+

(
a− br − p

1− p
kλrr

)
Jr +

1

2
k2rJrr = 0.

(32)

Lemma 7 Assume that the solution of the equation
(31) is of the form φ(t, r) = eD1(t)+D2(t)r, and its
boundary conditions are given by D1(T ) = D2(T ) =
0, then D1(t) and D2(t) are determined by (36) and
(35) respectively.

Proof. Putting φ(t, r) = eD1(t)+D2(t)r in (31)

eD1(t)+D2(t)r

((
Ḋ2(t) + (kλr − b)D2(t)

+
1

2
k2D2

2(t)− 1

)
r + Ḋ1(t) + aD1(t)

)
= 0.

Eliminating the dependence on r, we get

Ḋ2(t)+
1

2
k2D2

2(t)+ (kλr − b)D2(t)− 1 = 0. (33)

Ḋ1(t) + aD1(t) = 0. (34)

We write (33) as

Ḋ2(t) = −1

2
k2D2

2(t)− (kλr − b)D2(t) + 1.

Using the same technique as the equation (14), we
get

D2(t) =
n1n2

(
1− exp

{
−1

2k
2(T − t)(n1 − n2)

})
n1 − n2 exp

{
−1

2k
2(T − t)(n1 − n2)

}
(35)
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where

n1,2 =
b− kλr ±

√
(b− kλr)2 + 2k2

k2
.

Introducing (35) into (34), we have

D1(t) =
2a

k2
ln

n1 − n2

n1 − n2 exp{−1
2k

2(T − t)(n1 − n2)}
+ an2(T − t).

(36)

The proof ends. �

Lemma 8 Suppose that the solution of the equation
(33) is given by J(t, r) = eD3(t)+D4(t)r, with bound-
ary conditions: D3(T ) = D3(T ) = 0, then under the
condition of p < min

{
b2

(kλr−b)2+2k2
, 1

}
and p ̸= 0,

D3(t) and D4(t) are determined by (40) and (39) re-
spectively.

Proof. Introducing J(t, r) = eD3(t)+D4(t)r in the
equation (32)

eD3(t)+D4(t)r

((
Ḋ4(t)−

(
b+

p

1− p
kλr

)
D4(t)

+
1

2
k2D2

4(t) +
p

1− p
+

1

2
λ2
r

p

(1− p)2

)
r

+Ḋ3(t) + aD4(t) +
1

2
∥λs∥2

p

(1− p)2

)
= 0.

Eliminating the dependence on r, we get

Ḋ3(t) + aD4(t) +
1

2
∥λs∥2

p

(1− p)2
= 0,

D3(T ) = 0.

(37)

Ḋ4(t) +
1

2
k2D2

4(t)−
(
b+

p

1− p
kλr

)
D4(t)

+
p

1− p
+

1

2
λ2
r

p

(1− p)2
= 0, D4(T ) = 0.

(38)

We rewrite (38) as

Ḋ4(t) =− 1

2
k2D2

4(t) +

(
b+

p

1− p
kλr

)
D4(t)

− 1

2
λ2
r

p

(1− p)2
− p

1− p
.

The discriminant of quadratic equation

− 1

2
k2D2

4(t) +

(
b+

p

1− p
kλr

)
D4(t)

− 1

2
λ2
r

p

(1− p)2
− p

1− p
= 0

is given by

∆2 =

(
b+

p

1− p
kλr

)2

− 2k2
(
1

2
λ2
r

p

(1− p)2
+

p

1− p

)
.

=
1

1− p

(
b2 − p

(
(kλr − b)2 + 2k2

))
Using the same analysis as ∆1, we have ∆2 > 0

under the condition of p < min
{

b2

(kλr−b)2+2k2
, 1

}
and p ≠ 0. Meantime, the two different roots for the
above quadratic equation are given by

n3,4 =
b+ p

1−pkλr

k2
±

√
∆2

k2
,

By the same technique as the equation (14) and
(13), we obtain

D4(t) =
n3n4

(
1− exp

{
−1

2k
2(T − t)(n3 − n4)

})
n3 − n4 exp

{
−1

2k
2(T − t)(n3 − n4)

} .

(39)

D3(t) =
2a

k2
ln

n3 − n4

n3 − n4 exp{−1
2k

2(T − t)(n3 − n4)}

+

(
an4 +

1

2
∥λs∥2

p

(1− p)2

)
(T − t).

(40)

The proof is completed. �
Considering Lemma 7 and Lemma 8, we have

Hx

Hxx
= −1

q

(
q

1− p
x+ γφ

)
,

Hxr

Hxx
=

p− 1

q

[
D4(t)

(
q

1− p
x+ γφ

)
+ γφr

]
.

In a word, the optimal investment strategy of the
problem (6) under HARA utility can be formulated as
follows.

Theorem 9 If utility function is U(x) =
1−p
qp

(
q

1−px+ γ
)p

, q > 0, p < 1, p ̸= 0, then

under the condition of p < min
{

b2

(kλr−b)2+2k2
, 1

}
and p ≠ 0, the optimal investment strategies of the
problem (6) are given by

π∗
s(t) =

λs

qσ′
s

(
q

1− p
X(t) + γφ

)

π∗
B(t) =

(λ′
sσ

−1
s σr − λr)

√
r(t)

−qσB(t)

(
q

1− p
X(t) + γφ

)
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+
k
√

r(t)

σB(t)
·p− 1

q

[
D4(t)

(
q

1− p
X(t) + γφ

)
+ γφr

]
where D4(t) are determined by (39), and

φ = φ(t, r) = eD1(t)+D2(t)r,

φr =
∂φ(t, r)

∂r
= D2(t)e

D1(t)+D2(t)r,

From Theorem 9, we can draw the following con-
clusions:

(i) The optimal amount π∗
s(t) invested in the s-

tock at time t is connected with market parameters
λs, p, q, γ, σs, and has nothing to do with the other
market parameters;

(ii) π∗
s(t) is increasing with parameters p and γ,

and decreasing with the parameter q;
(iii) The optimal amount π∗

B(t) invested in the
zero-coupon bond at time t is connected with all mar-
ket parameters except a and b;

6 Conclusions

The CIR model is one of the most importan-
t mathematical models describing term structure of
interest rate and can accurately fit the dynamic behav-
ior of interest rate in actual investment environments.
In this article, we get the closed-form solution of the
optimal investment strategies under power utility, ex-
ponential utility and HARA utility by using dynam-
ic programming principle and variable change tech-
nique.
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